新葡京娱乐场网站-澳门葡京娱乐_澳门百家乐论坛_新全讯网3344555 (中国)·官方网站

首頁 > 講座預告 > 正文

講座預告

首頁 > 講座預告 > 正文

【韶風名家論壇】Convexity, Sparsity, Nullity and all that … in Machine Learning

發布時間 : 2017-03-28 00:00    點擊量:

分享:
報告時間
講座類型
報告題目:Convexity, Sparsity, Nullity and all that … in Machine Learning
主 講 人:Hamid Krim,北卡羅來州立大學教授,IEEE Fellow 
 
報告人簡介:
  Hamid Krim, 現任美國北卡羅來納州立大學電子與計算機工程系教授,研究興趣為統計信號和圖像分析、應用問題的數學建模。Krim教授曾擔任AT&T貝爾實驗室、麻省理工大學研究專家;曾獲貝爾實驗室杰出成績獎,美國國家科學基金會職業成就獎。目前,Krim是IEEE Transactions on Signal Processing的副主編IEEE Signal Processing Magazine的編委會成員,SPTM和Big Data Initiative的程序委會員會成員,2008年成為IEEE Fellow,被評為2015-2016年IEEE SP Society Distinguished Lecturer。
 
報告摘要:
  High dimensional data exhibit distinct properties compared to its low dimensional counterpart; this causes a common performance decrease and a formidable computational cost increase of traditional approaches. Novel methodologies are therefore needed to characterize data in high dimensional spaces.
  Considering the parsimonious degrees of freedom of high dimensional data compared to its dimensionality, we study the union-of-subspaces (UoS) model, as a generalization of thelinear subspace model. The UoS model preserves the simplicity of the linear subspace model, and enjoys the additional ability to address nonlinear data. We show a sufficient condition to use l1 minimization to reveal the underlying UoS structure, and further propose a bi-sparsity model (RoSure) as an effective algorithm, to recover the given data characterized by the UoS model from non-conforming errors/corruptions.
  As an interesting twist on the related problem of Dictionary Learning Problem, we discuss the sparse null space problem (SNS). Based on linear equality constraint, it first appeared in 1986 and hassince inspired results, such as sparse basis pursuit, we investigate its  relation to the analysis dictionary learning problem, and show that the SNS problem plays a central role, and may naturally be exploited  to solve dictionary learning problems.
  Substantiating examples are provided, and the application and performance of these approaches are demonstrated on a wide range of problems, such as face clustering and video segmentation.
 
主持人:歐陽建權教授,湘潭大學信息工程學院副院長
時 間:2017年3月30日下午2:00
地 點:工科樓北樓201
 
歡迎廣大師生參加!
 
湘潭大學信息工程學院
智能計算與信息處理教育部重點實驗室
2017年3月28日

關閉

友情鏈接:

地址:中國湖南湘潭  郵編:411105

版權所有?湘潭大學 (湘ICP備18021862號-2) 湘教QS3-200505-000059

湘公網安備 43030202001058號    

百家乐官网规律打法| 百家乐官网baccarat| 535棋牌游戏| 多伦多百家乐官网的玩法技巧和规则| 百家乐赌场| 百乐坊百家乐官网娱乐城| 太子百家乐娱乐城| 百家乐官网赌场现金网| 百家乐官网路子分| 百家乐水浒传| 老k百家乐官网游戏| 真钱的棋牌游戏| 网上百家乐官网试| 赢波娱乐| 真人百家乐赢钱| 哪里有百家乐官网投注网| 网上百家乐大赢家| 百家乐官网正品地址| 今天六合彩开什么| 百家乐官网霸王闲| 娱乐场| 百家乐翻天qvod粤语| 澳门百家乐官网免费开户| 大发888娱乐场金沙| 百家乐桌出租| 试玩百家乐官网的玩法技巧和规则| 走地| 合肥太阳城在哪| 百家乐神仙道官网| 代理百家乐官网免费试玩| 现金投注网| 威尼斯人娱乐网开户| 望城县| 真人游戏角色| 如何玩百家乐游戏| 百家乐官网网页qq| 足球竞猜规则| 百家乐怎样玩的| 百家乐官网丽| 百家乐官网一般多大码| 百家乐官网美女荷官|